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Abstract
We reinvestigate the question of whether or not the dynamical symmetries of
the two-dimensional interacting boson model can be transformed into each
other by the quantum deformation of the algebraic structure. The deformation
of both the vibrational and the rotational spectra is considered, and the breaking
of the classical symmetry is measured quantitatively, while a systematic search
for the best fit is performed. In no case can the quantum-deformed spectrum
reach the other classical limit; only a modest improvement is observed with the
phase deformation of the rotational spectrum.

PACS numbers: 02.20.Uw, 03.65.Fd, 21.60.Ev

1. Introduction

The appearance of quantum algebras initiated very lively research on their possible application
in many branches of physics, including nuclear spectroscopy [1]. Quantum algebras are
deformed versions of the classical Lie algebras; therefore, the symmetries based on them are
more general than those appearing in Lie-algebraic models. One of the interesting questions
one can address is: Can the quantum deformation of the algebraic structure (in other words,
the kinematical breaking of the symmetry) bridge the gap between the dynamical symmetries
of the algebraic models? These symmetries, described by a nested chain of Lie subalgebras,
show up as analytically solvable limits of the models, and correspond to well-defined physical
situations, e.g. the rotational or vibrational behaviour of a many-body system. The regions in
between the dynamical symmetries, however, need numerical treatment in the usual approach.
On the other hand, quantum algebraic descriptions provide us with analytical solutions even if
we move away from the classical Lie-algebraic symmetry. The question is: How far can one
go in this way along the path to the other classical limit?

The problem of the complete breaking of dynamical symmetries, i.e. the bridging between
the classical limits by quantum deformation, has been investigated in one- [2], two- [3, 4]
and three-dimensional [5, 6] models, and is reviewed in [1]. The conclusions of these works
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are not univocal, which is related to the fact that the applied methods are different. In some
cases only the energies of the ground-state rotational band are investigated, while in others
the complete spectrum, including electromagnetic transitions, is treated. Furthermore, the
allowed regions of the deformation parameters were also different. Due to this reason, the
available results are still not conclusive.

In the present paper we reinvestigate the question of kinematical versus dynamical
symmetry breaking within the framework of the two-dimensional interacting boson model
of an SU(3) group structure [7]. This model is a toy version of the three-dimensional
interacting boson model (IBM) [8], which has a U(6) group structure, and turned out to be
very successful in the description of the collective motion of real nuclei. The two-dimensional
model shows the basic features of the real IBM in a simplified form; therefore, it seems to be
very well suited for our study. It is simple enough in order to study its quantum deformation,
yet it is not trivial: it contains two dynamical symmetries, corresponding to the rotational
and vibrational limits. We consider the complete spectrum here, including electromagnetic
transitions, similar to the work [3], and not only the energies of the states in the ground-state
band, like in [4]. The novel features of the present work in comparison with the previous ones
are as follows. (i) Here we measure quantitatively the similarity of the quantum-deformed
spectrum to those of the corresponding classical Lie-algebraic dynamical symmetries. The
conclusions so far have been based on qualitative comparisons between the spectra. (ii) We
perform a systematic search in fitting the kinematically broken spectrum to those with exact
dynamical symmetries. (iii) We investigate the problem from both sides, i.e. trying to reach
the classical rotational spectrum with the quantum-deformed vibrational one, and vice versa,
based on more recent works [1]. (At the time of the earlier works, only the deformation of the
vibrational SU(2) was known [9].) As for the deformation parameter, one has to distinguish
between two cases. (i) When it is a real number, or a pure phase value, then the quantum-
deformed model is well established in the sense that it has real physical quantities. (ii) When
it is an arbitrary complex number, this is not the case; therefore, the physical interpretation
of a model with such an algebraic structure is not yet clear, in spite of some pioneering work
along this line [1]. Nevertheless, we also investigate this possibility in order to see what kind
of improvement can be made (formally), if any.

The structure of this paper is as follows. In section 2 we review very briefly first the
classical Lie-algebraic model, based on [7]; then we consider the relevant formulae of its
quantum deformation, based on [1]. In section 3 we present our results and finally the
conclusions are drawn in section 4.

2. The model

2.1. Classical algebraic description

In the two-dimensional interacting boson model the building blocks are bosons with angular
momentum m = 0,±2. Their creation

(
a
†
0, a

†
+, a

†
−
)

and annihilation (a0, a+, a−) operators
satisfy the usual boson commutation relations[

ai, a
†
j

] = δij , [ai, aj ] = [
a
†
i , a

†
j

] = 0. (1)

The physical operators are obtained in terms of their particle number conserving bilinear
products:

�ij = a
†
i aj , (2)

which satisfy the

[�ij ,�kl] = δjk�il − δil�jk (3)
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commutation relations, and generate the U(3) group. (Here we follow the notations of most
of the papers related to the interacting boson model, and refer to the groups rather than to their
algebras.) The

N =
∑

i

�ii (4)

particle number operator is kept constant; therefore, the number of independent operators is 8,
and the underlying group structure of the model is SU(3). Only totally symmetric irreducible
representations (irreps) [N, 0, 0] are physically important, because we are dealing with a
system of bosons.

There are two group chains containing the angular momentum group SO(2). The first
one describes the vibrational motion:

SU(3) ⊃ SU(2) ⊃ SO(2),

|N, nd, M〉, (5)

nd = N,N − 1, . . . , 1, 0; M

2
= nd, nd − 2, . . . , 1 or 0,

and the second one characterizes the rotational limit:

SU(3) ⊃ SO(3) ⊃ SO(2),

|N, L, M〉, (6)

L = N,N − 2, . . . , 1, or 0; M

2
= L,L − 1, . . . , 1, 0.

When the dynamical symmetry (5) holds, the energy eigenvalue is given by

Ev = A + Bnd + Cn2
d + DM2, (7)

while the allowed E2 transitions are

〈N, nd + 1,M ± 2|Q±|N, nd,M〉 =
√

(N − nd)(nd/2 ± M/4 + 1), (8)

〈N, nd − 1,M ± 2|Q±|N, nd,M〉 =
√

(N − nd + 1)(nd/2 ∓ M/4). (9)

Here the transition operator is that of the two-dimensional quadrupole operator:

Q± = a
†
±a0 + a

†
0a±. (10)

For the rotational limit of (6) the corresponding analytical formulae are

Er = a + bL(L + 1) + dM2, (11)

〈N,L,M ± 2|Q±|N,L,M〉 = 1√
2

√
(L ∓ M/2)(L ± M/2 + 1). (12)

Typical vibrational and rotational spectra are shown on the right- and left-hand sides of
figure 1, respectively. The parameters of the energy formulae are A = 0.0, B = 1.0, C =
0.1,D = 0.05, and a = 9.6, b = −0.2286, d = 0.1167. The parameters were chosen in such
a way that the endpoints of the spectra are at the same positions. The strengths of the reduced
electric transitions (absolute squares of the matrix elements) are also shown in arbitrary units.
The interband transitions disappear in the rotational limit.
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Figure 1. Classical rotational (left side) and vibrational (right side) spectrum of the two-
dimensional collective model. The central part shows the best approximation (phase-deformed
rotational spectrum) which can be reached by performing algebraic deformation of one classical
limit towards the other one.

2.2. Quantum-deformed algebraic description

In the quantum-deformed algebraic description the

Aij = a
†
i aj (13)

operators close under the q-commutation relations defined as

[A,B]q = AB − qBA, (14)

see e.g. [1]. The group chain corresponding to the vibrational limit of (5) is

SUq(3) ⊃ SUq(2) ⊃ SOq(2), (15)

while the analogue of (6) for the completely symmetric irrep, what we need here, is

SUq(3) ⊃ SOq(3) ⊃ SOq(2). (16)

The quantum numbers are similar to those of the classical limits.
In the vibrational limit the matrix elements giving the energy eigenvalues are

Eq = Aq + Bq

[nd

2

] [nd

2
+ 1

]
+ DqM

2, (17)

while the transitions are determined by the values

〈N, nd + 1,M ± 2|Q±|N, nd,M〉q =
√

[N − nd ][nd/2 ± M/4 + 1], (18)

〈N, nd − 1,M ± 2|Q±|N, nd,M〉q =
√

[N − nd + 1][nd/2 ∓ M/4], (19)

and the selection rules are similar to that of the classical limit.
Here

[x] = qx − q−x

q − q−1
. (20)
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Table 1. The similarity (W) of the quantum-deformed spectrum to those of the classical dynamical
symmetries (W = 1: no improvement at all, W = 0: reaching the other Lie-algebraic limit). The
results for the energies and E2-transitions are indicated separately. The deformations should be
read from left to right, e.g. rot-p(r)-vib means: starting from rotation, going towards vibration via
phase (real) deformation.

Deformation Energy Transition

vib-p-rot 0.945 1.000
vib-r-rot 1.000 0.981
rot-p-vib 0.815 0.857
rot-r-vib 1.000 1.000

When q is real (q = eτ , with τ real) the q-numbers can be written as

[x] = sinh τx

sinh τ
, (21)

while when q is a phase (q = eiτ , with τ real) the q-numbers have the form

[x] = sin τx

sin τ
. (22)

In the case of the SOq(3) dynamical symmetry, the energy eigenvalue is given by

E = aq + bq[L][L + 1] + dqM
2, (23)

while the non-zero E2 matrix elements are

〈N,L,M±2|Q±|N,L,M〉 = 1√
2

√
[L∓M/2][L±M/2 + 1]. (24)

3. Calculations

When approaching the rotational (vibrational) spectrum via the quantum deformation of the
vibrational (rotational) one, we measure the distance from the endpoints by the quantity

W =
∑

i

∣∣EB
i − E

Q
i

∣∣
∑

i

∣∣EB
i − EA

i

∣∣ , (25)

where EA
i are the energy values of the initial spectrum, EB

i are the energy values of the
destination spectrum and E

Q
i are the energy values of the q-deformed spectrum. Therefore,

W = 0 indicates that the quantum deformation of the algebraic structure can completely cover
the distance between the classical limits, while W = 1 shows a situation when the q-algebraic
dynamical symmetry cannot get closer to the destination than the classical one (i.e. our starting
point).

When considering the electromagnetic transitions we use a similar quantity as a measure
of the distance of the quantum-deformed dynamical symmetry from the desired destination,
in which case, Ei stands for the E2 transition probability, instead of the energy.

When performing the deformation of the algebraic structure the parameters of the
Hamiltonian are changed in such a way that the three extremal states of the spectrum are fixed
at the same positions. This requirement determines the parameters aq, bq, dq or Aq,Bq,Dq

in each step. (Therefore, the rotational or vibrational nature of the spectrum is reflected by its
details, not by e.g. the total energy range of the ground-state band.)

Table 1 shows the results of our calculations for the four cases of the well-established
q-deformed model (with real physical quantities): deformation of the vibrational and rotational
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Figure 2. The similarity of the q-deformed rotational spectrum to the classical vibrational one
measured by W of equation (26, 27) for arbitrary q-values. Each line corresponds to a definite
phase-value of the complex number, while its absolute value is shown on the horizontal axis.

spectrum with pure phase and real parameters. In the first step we have investigated the
deformation of the energy spectrum and transition ratios separately. As is seen, there is only
one case in which the quantum deformation takes place in the right direction, i.e. governs the
system from one of the classical dynamical symmetries towards the other, both for the energies
and for the transition ratios. This is the case of the phase-deformed rotational spectrum.

In the second step of the calculation we looked for the minimum of the

W = W energy + W transition (26)

quantity, as a function of τ . The best fit, shown in the central part of figure 1, is provided by
τ = 0.178, which resulted in W = 1.705. (In this combined fit W = 0 would correspond
to reaching the classical vibrational limit, while W = 2 indicates the position of the starting
point (rotational limit of the classical Lie-algebraic model).)

We have also investigated the possibility of quantum deformation with arbitrary (not
real or pure phase) complex numbers. This kind of generalization involves highly non-trivial
questions concerning the physical interpretation of the model, since several physical quantities
may have complex (or undefined) values. Yet, based on the conjecture of [4], it seemed to be
interesting to test this possibility from the purely formal viewpoint. In particular, we intended
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to check what kind of improvement can be made in this manner when the search is performed
systematically, and the calculation includes the whole spectrum.

The energy expression of equation (17) for the q-deformed vibrational limit is ambiguous
due to the half-integer powers of the q-numbers [ nd

2 ] according to equation (20). Therefore, we
have looked at the q-deformation of the rotational limit, where this problem does not appear,
and furthermore, this case gave the best result with the better established version of the model
of real or phase deformation.

As a measure of the distance of the q-deformed spectrum from the classical limit,
we have applied again a summed quantity for the energy and the transition probabilities:
W = W energy + W transition. The latter part was the same as before; however, due to the complex
energy-eigenvalues W energy had to be modified. We calculated

W energy =
∑

i

∣∣EB
i − E

Q
i

∣∣
∑

i

∣∣EB
i − EA

i

∣∣ +

∑
i |�i |∑

i

∣∣EB
i − EA

i

∣∣ , (27)

where �i stands for the imaginary part of the energy for the ith state. This quantity has a
value 1 at the starting point, i.e. at the classical rotational limit, 0 at the destination, i.e. at the
classical vibrational limit, but it may have values larger than 1 in between. We have performed
a systematic search for the deformation parameter, which gives the best approximation to
the vibrational limit. The result is shown in figure 2, where W is shown as a function of
the absolute value of the complex number, and each single line corresponds to a given phase
(which was changed also systematically between 0 and 2π ). The upper, middle and lower
parts show the landscape, intermediate and fine-resolution pictures around the minimum. It is
very interesting that allowing an arbitrary complex deformation of the algebraic structure did
not give any better agreement than the pure phase-deformed model.

4. Summary and conclusions

In this paper we have addressed the question whether or not the gap between the dynamical
symmetries of a Lie-algebraic model can be bridged by the analytical solutions of the quantum-
deformed algebraic model. As a specific example we have investigated the two-dimensional
interacting boson model, which is simple enough, having an algebraic structure of U(3), but
is not trivial, having two dynamical symmetries, corresponding to vibrational and rotational
spectra. We have investigated the quantum deformation of both limits, and the complete
spectrum, including electromagnetic transitions.

In addition to real, and pure phase values of the deformation parameter, which result in real
physical quantities for the quantum-algebraic model, we have also investigated the deformation
of the rotational spectrum with arbitrary complex q-numbers, which results in well-defined
(complex) energies. The distance from the classical limits was measured quantitatively. It
turned out that quantum-deformed dynamical symmetries cannot take the system from one
classical limit to the other; in contrast, they can cover only a tiny part of the gap between
them. Only the phase-deformed rotational limit could govern the system towards the other
classical limit, but its similarity is only slightly better (14.7%) than that of the two classical
limits. Interestingly enough it turned out that the arbitrary complex q-deformation did not
improve the agreement that can be obtained with pure phase deformation.
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